DETAILED EQUIPMENT SPECIFICATION

MAT WATER SOFTENERS

WATER SOFTENER

1. Furnish and install a Marlo Model MAT-_______ twin alternating water softener to provide a zero soft water effluent as determined by an ASTM standard soap test method, when operated in accordance with operating instructions. Each unit shall be designed to provide _______ grains per tank maximum capacity of hardness reduction between regenerations at a maximum salt dosage of _____ lbs. salt. Each unit shall be capable of a continuous flow rate of _______ GPM with a pressure drop of 15 psi and a peak flow rate of _______ GPM with a pressure drop of 25 psi.

2. The softener vessel(s) shall be designed for a working pressure of 150 psi and a temperature of 120° F. A minimum freeboard volume of 50% shall be provided to assure adequate bed expansion during backwash. Vessel(s) shall be manufactured of fiberglass reinforced polyester (FRP). The exterior side shall be reinforced by a continuous roving glass filament overwrap of the same color as the vessel(s) shell. The vessel(s) shall be supported by a molded polypropylene structural base. Each vessel(s) shall have the dimensions of _______ diameter x _______ height plus the height of the base.

2a. **ASME Tank Option** – The softener vessel(s) shall be fabricated in accord with the ASME code, certified, and so stamped (available in 24” diameter vessels and larger).

3. The backwash distributor and soft water collector shall be of the hub-radial design and shall require only assembly of the riser pipe upon installation. The radials shall be designed with a higher density of slots at the outer ends to provide adequate distribution and collection of water away from the center of the tank. Internal piping material shall be constructed of PVC and/or ABS plastic. A washed gravel underbedding shall be provided as a support bed for the exchange media and an aid in backwashing. Systems under 180,000 grains and smaller shall have single point distributors. Systems 60,000 grains and smaller do not have gravel underbedding.

4. Each softener vessel shall be provided with _____ cubic feet of high-capacity, non-phenolic resin per tank having a minimum exchange of capacity of 30,000 grains per cubic foot when regenerated with 15 lbs. of salt per cubic foot. The media shall be solid, of the proper particle size (not more than 4% through 40 mesh U.S. standard screen, wet screening) and shall contain no plates, shells, agglomerates or other shapes which might interfere with the normal function of the water softener.

5. The combination salt storage and brine measuring tank with cover shall be sized to hold _______ lbs. of salt and have the dimensions of _______ diameter x _______ tall. The tank shall be of rotationally molded rigid polyethylene. The brine tank shall be equipped with an elevated salt plate for the collection of brine and shall have a chamber to house a brine valve assembly. The brine valve assembly shall include an automatic air eliminator and safety float shut-off valve. It shall open automatically, to educt brine,
close to prevent the entrance of air after the brine has been drawn, and permit refill of the tank with the correct amount of water. Brine dosage shall be controlled by the softener control valve through an adjustment on the clock timer. The system shall be designed to allow proper refilling regardless of the salt level in the tank.

6. The control valve shall have _____ inch inlet and outlet connections. It shall be of the mechanically actuated, four position type to accomplish the regeneration steps of backwash, brine draw / slow rinse, fast rinse and brine refill, all accomplished using soft water. The valve shall contain a fixed orifice eductor nozzle and self-adjusting backwash flow control. The main control body, second tank adapter and connector yoke shall be made of brass with plastic couplings, and copper connector pipes provided. Second tank, meter (and bypass if provided) shall be of the quick disconnect style. Regeneration and alteration shall be actuated by a mechanical drive.

7. The control timer shall have adjustable duration of the various steps in the regeneration cycle, shall allow for “pushbutton” start and also provide complete manual regeneration. Regenerations shall be initiated by volumetric meter. An arrow on the control valve shall indicate which position the control valve is in during regeneration. All steps of the regeneration cycle shall be accomplished using soft water.

8. Alternator – An alternator shall be supplied to allow only one unit to be in regeneration or standby at a time while the other unit is in-service. This system shall provide a continuous supply of soft water. An arrow shall indicate which unit is in-service.

9. Volumetric Meter – A volumetric meter, mechanically coupled to the control valve, shall initiate regeneration. After a preset volume of treated water has passed through the softener, the meter timer shall initiate a regeneration. The control shall have provisions for individual setting of all regeneration cycles. The meter shall be attached to the control valve and have an outlet pipe the size of _____ inches.

9a. **Electronic Meter Option** – The standard mechanically operated water meter shall be substituted with the model 3200 ET and electronic microprocessor based water meter. The meter register shall have a digital display for volume batch size, volume batch remaining, continuous flow rate, and volume totalization.

10. **Skid Mount Option** – The softener resin tanks and brine tank shall be mounted on an epoxy coated carbon steel skid. The control valve shall be pre-installed on the softener tanks and connected to the brine tank. All resin and support gravel shall be pre-loaded in the softener tanks.

11. A complete water hardness test kit shall be furnished (ASTM soap test method).

12. The water softening equipment shall be warranted against failure due to faulty materials and workmanship for a period of one (1) year. In addition, the fiberglass reinforced pressure vessel(s) shall be warranted for a period of five (5) years.